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Abstract--The mass transfer entry length and maximum mass transfer reduction asymptote for drag- 
reducing viscoelastic fluids have been calculated analytically using the successive approximation technique. 
The eddy diffusivity of mass reported by Shulman et al. [10] and Virk's velocity profile corresponding to the 
maximum mass transfer reduction in turbulent pipe flow were applied to the present analysis. The mass 
transfer entry length for these fluids was found to be 8-40 pipe diameters depending on the Reynolds number. 
The predicted mass transfer rates for these fluids are in good agreement with available empirical mass 
transfer results, which show approximately 65-75% reduction in the mass transfer rate compared to the 
Newtonian values at the same Reynolds and Schmidt numbers. A comparison of these mass transfer results 
with available heat transfer measurements leads to the conclusion that there is no simple direct relationship 

between heat and mass transfer for drag-reducing viscoelastic fluids. 

N O M E N C L A T U R E  

.4, dimensionless value defined by equation 
(17); 

d, diameter of tube; 
D, diffusion coefficient; 
f, Fanning friction coefficient; 
K, mass transfer coefficient; 
JD, the mass transfer j factor, (Sh/ReSc).ScZ/3; 
in, the heat transfer j factor, (Nu/RePr) . Pr 2/3 ; 
l, total tube length; 
L, entrance length ; 
rh, uniform mass flux at the wall; 
r, radial coordinate; 
R, radius of tube; 
Re, Reynolds number defined by equation (14); 
Sc, Schmidt number, v/D; 
Sh, Sherwood number, Kd/D; 
u, axial velocity; 
u*, friction velocity, x/zw/P; 
w, mass fraction; 
win, inlet mass fraction; 
x, axial coordinate; 
y, radial distance from the tube wall, R - r. 

Greek symbols 
A, diffusional boundary layer thickness; 
s en, eM, eddy diffusivity of mass, heat and 

momentum respectively; 
v, kinetic viscosity evaluated at the tube wall; 
p, mass density of working fluid; 
zw, wall shear stress. 

Subscripts 
b, bulk parameter; 
D, designates mass transfer; 
H, designates heat transfer; 
M, designates momentum transfer; 

X, 

1, 
2, 

local value along the axis; 
the first approximat ion;  
the second approximation. 

Superscripts 
+ ,  dimensionless variables defined by equation 

(6); 
', differentiation with respect to x +. 

I N T R O D U C T I O N  

A NUMBER of different analytical techniques have been 
used to solve the mass transfer problem in the entry 
region of laminar channel flows. As pointed out by 
Popel and Gross [1] these analytical approaches can 
be classified generally into two categories 

(1) the extension of the Graetz problem by comput- 
ing a large number of eigenvalues and 
eigenfunctions; 

(2) the extension of Leveque's similarity solution in 
a power series asymptotic expansion. 

Notter and Sleicher [2] applied the extension of the 
Graetz problem to fully developed turbulent p!pe 
flows for Newtonian fluids with the boundary con- 
dition of constant wall concentration and derived the 
following correlation by calculating the corresponding 
eigenvalues and eigenfunctions numerically 

JD ---- 0.149Re -~  Re > 5000 and Sc > 100. (1) 

Dimant and Porch [3] also used the extension of the 
Graetz problem to predict the local turbulent heat 
transfer rates of drag-reducing viscoelastic fluids for 
both constant wall temperature and constant heat 
flux boundary conditions under the assumption of 

In the current study, we develop a procedure which 
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makes it possible to obtain an analytical prediction of 
the mass transfer entry length and the fully developed 
mass transfer coefficient for undegraded saturated 
viscoelastic fluids in turbulent pipe flow. Successive 
approximation 1-4] is applied for the case of constant 
mass flux boundary condition (the so-called boundary 
condition of the second kind). 

ANALYSIS 

Consider a viscoelastic fluid in turbulent flow 
through a circular tube with mass transfer taking place 
between the fluid and the tube wall. Under the 
assumptions of steady flow, axisymmetric diffusion, 
fully developed hydrodynamic condition, no chemical 
reaction and uniform mass flux at the wall (rh), the 
governing mass diffusion equation and corresponding 
boundary conditions in the developing region can be 
written as follows: 

1 ~ [r(D+eD)B_~r] aw = u - -  (2) 
r dr ~x 

w=wln  at x = 0  (3) 

w = w i n  at x > 0 ,  r = R - A  (4) 

dw 
pD-~-r = rh at x > 0 ,  r = R (5) 

where th is the constant mass flux at the wall. Let us 
now introduce the following dimensionless variables 

w +  = p(w - Wln)U* X+ = xu__** 
f f l  ' 

y+ = yu* u+ = u 
v '  (6) 

where y = R - r and u* is the friction velocity defined 
as x/zw/P. Then, the mass diffusion equation and the 
three boundary conditions can be non- 
dimensionalized as follows: 

1 o[  
R + -  y+ Oy + ( R + - y + )  

(Sc t~ aw+-] Ow+ x + ~ - )  d--~J = u§ d ~ -  (7) 

w + = 0  at x §  (8) 

w + = 0  at x + > 0 ,  y + = A  + (9) 

1 Bw + 
. . . .  1 at x §  y + = 0  (10) 
Sc By + 

where Sc = v/D and A § is the diffusional boundary 
layer thickness. 

The successive approximation technique used in the 
present study requires explicit expressions for the 
velocity profile (u § and the eddy diffusivity of mass 
(to). It is assumed that the fluid is undegraded and 
saturated and the velocity profile and eddy diffusivity 
of mass correspond to this condition. Then, the 
resulting prediction will yield the maximum mass 
transfer reduction asymptote. 

Virk's three layer velocity modelt  [-5, 6] for max- 
imum drag reduction corresponds to the stated 
condition and will be applied in the right hand side of 
equation (7) 

u + = y +  y+<11.6 ] 

u + = 11.7 In y+ - 17.0 l l . 6 < y  + <y,+ 

u + = 2 . 5 1 n y + + 9 . 2 1 n y + - 1 7 . 0  y+<y+ 

(11) 

where y~+ is the distance to the interface between the 
buffer zone and the turbulent core. For the maximum 
drag reduction case y,+ is equal to R 4. 

Shulman et al. I-9] reported the eddy diffusivity of 
mass (to) as a function of dimensionless radial distance 
y* for saturated and undegraded polymer solutions. 
Recently, Shulman and Pokryvailo [-10] modified their 
original expression and proposed the following: 

t_oo = 1.6 x 10-4y +3"~ (12) 

Equation (12) will be used for the eddy diffusivity of 
mass in the present analysis. 

For  fully established mass transfer conditions cor- 
responding to the imposed boundary condition of the 
second kind it can be shown that 

aw + 4 
(13) 

c~x + Re 

where 

ubd 
Re - (14) 

V 

and v is the kinetic viscosity evaluated at the tube wall. 
Substituting equation (13) into (7), integrating w § 
twice with respect to y + and applying the boundary 
conditions, the first approximation of the mass frac- 
tion profile becomes 

= f" FR+l(R+_y+)(l+to ]dy+ 
w? J,+ L \" \Sc v /_J 

A* Y+ 4 
_ r  ,FT 

Jr tLJo Re Jl 

A second approximation can be derived by substitut- 
ing w~ into the right hand side of equation (7) and 
repeating the above-mentioned procedure. 

t It is worth mentioning that the velocity profiles proposed 
by Yoo [7] and Ng I8] for maximum drag reduction were 
also applied in the current study and the final results were 
found to be almost identical to those obtained using Virk's 
profile. 
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---~ fi~* {[ f~* U +(R+-A +)dy + ] /  

(R+-Y+)(~ +g~ (16, 

where 

x [ R + _ f f 4 + +  + q ge-e u (g -y  )dy§ (17) 

where w~ is the bulk mass fraction which can be shown 
from the mass balance equation to be 

4x + 
w~ = (24) 

Re 
and f is the friction coefficient corresponding to the 
maximum drag reduction asymptote as proposed by 
Virk, Mickley and Smith [5] as follows: 

1 
= 19.0 log, o (Rex~f )  - 32.4. (25) 

xlJ 

Thus, the mass fraction distribution along the wall can 
be obtained by replacing the lower limit y § in equation 
(16) with zero. 

+ 1 

.4 can be simplified using c~w~/Oy + ly+ =A+ = 0, which 
renders a useful form for A § 

= dx +-=R+(R + - A  +) + 

x I R + - f ~  + u+(R § - y + ) d y + ] t .  (19) 

Therefore, ,4 becomes 

~=R+/ f ;*u+(R+-y+)dy+.  (20) 

From equation (19), the dimensionless mass transfer 
entry length L + for drag-reducing viscoelastic fluids 
can be derived as follows: 

l"Irl - l = u+(R § y+)dy + 
JO L L J O  

R + ( R  + - A+) ~ + da § (21) 

From the definitions of the local Sherwood number 
and mass transfer Stanton number, Shx and Stx 
become 

Sh,,- ScRex/f/2 (22) 
(w +~ - w :  ) 

x/ f /2  (23) - -  + Stx (w~ - w~ ) 

RESULTS AND DISCUSSION 
In the calculation of the above parameters, numeri- 

cal integration formulae introduced by Minkowycz 
and Sparrow [11] were used. These integration for- 
mulas were derived by fitting a third-degree poly- 
nomial through four points. The convergence of each 
numerical integration was also ensured by increasing 
the number of panels from 50 to 150. 

MASS TRANSFER ENTRANCE LENGTH 
The mass transfer entrance length for drag-reducing 

viscoelastic fluids calculated using equation (21) is 
shown in Fig. 1. For Schmidt number equal to 1000, 
which applies to many drag-reducing polymer so- 
lutions, the mass transfer entrance length becomes 
8-40 diameters depending on the Reynolds number. 
Considering the extremely long heat transfer entrance 
length (L/d ~ 400)reported by Yoo and Hartnett [12] 
and Ng et al. [13, 14], the short mass transfer entry 
length is somewhat surprising if we assume that heat 
and mass transfer are analogous processes. 

SHERWOOD NUMBER 
The Sherwood number for fully established mass 

transfer conditions was calculated as a function of 
Reynolds number for three different Schmidt numbers 
using equations (18), (20) and (24) together with A + = 

~ 
4' 

Lid 2 

101 

e 

4xloO[ 
10 3 

I t I I ] I I I 1 
s . o o o ~  
I , O 0 0  

8c=I00 

l I l l 1 1 l t l 
2 4 6 8 10 4 2 4 6 ; 10 5 

Re 

FIG. 1. Mass transfer entry length vs Reynolds number for 
drag-reducing viscoelastic fluids. 
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R +. The results are presented in Fig. 2, which also 
shows the Newtonian results for Notter and Sleicher 
[2-] for Sc equal to 1000. Compared to the Newtonian 
values, the current results for a viscoelastic fluid with 
Sc equal to 1000 give 65-75% mass transfer reduction 
in Sherwood number depending on the Reynolds 
number. 

THE MASS T R A N S F E R  j F A C T O R  

In the correlation of mass (or heat) transfer data for 
Newtonian fluids, the j factor has been widely used 
since it has been empirically shown that it absorbs the 
Schmidt (or Prandtl) number effect and consequently 
the j  factor is a function only of the Reynolds number. 
For  purely viscous non-Newtonian fluids, Bird [15,] 
demonstrated in his modification of Graetz solution 
thatjn eliminates the Prandtl number effect. Therefore, 
it has been of interest to test the applicability of the 
above statement to viscoelastic fluids. 

Thej  factor of mass transfer calculated as a function 
of the Reynolds number is shown in Fig. 3. The current 
calculation gives an identical value of Jo for three 
different Schmidt numbers at each Reynolds number, 
suggesting that the j factor expression effectively 
eliminates the Schmidt number effect in the correlation 
of mass transfer data. The current results shown in Fig. 
3 can be described by the following correlation 

Jo = 0.022Re- o.2a. (26) 

C O M P A R I S O N  W I T H  E X P E R I M E N T A L  DATA 

There are numerous papers reporting turbulent 
mass transfer rates for turbulent flow of Newtonian 
fluids in channels of various shapes [16-24]. In such 
cases there is conclusive evidence that an analogy 
between momentum, heat and mass transfer can be 
drawn as follows [25, 26-] : 

J .  = Jo = f/2. (27) 
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FIG. 2. Sherwood number vs Reynolds number for viscoelas- 
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FIG. 3. Mass transfer j factor vs Reynolds number for 
viscoelastic fluids. 

Turning to viscoelastic fluids, relatively few exper- 
imental mass transfer data exist [27-30-]. For  these 
studies the electrochemical method is the experimental 
technique most commonly used to measure the mass 
transfer rate at the wall (an excellent and detailed 
review of the electrochemical method was reported by 
Mizushina [31,]). 

In contrast, Virk and Suraiya [30] recently applied 
both the weight loss method [18,] and the ultraviolet 
spectrophotometric method. Unlike the previous in- 
vestigators [27-29-] who used relatively short mass 
transfer test sections of lid less than four, Virk and 
Suraiya constructed mass transfer sections of 34.5 and 
69 diameter lengths preceded by a hydrodynamic 
section of 129 diameter lengths and conducted turbu- 
lent mass transfer measurements with aqueous sol- 
utions of polyethylene oxide. The mass transfer rates 
measured in the 69 diameter length test section gave 
identical values to those obtained in the 34.5 diameter 
length tube for all of the polymer solutions used in the 
Reynolds number ranging from 5000 to 35 000. Using 
those data obtained in the shorter test section, they 
proposed the following expression for the maximum 
mass transfer reduction asymptote 

Jo = 0.022Re - 0.29. (28) 

This correlation equation is shown in Fig. 4. 
Shulman and Pokryvailo [10-] conducted turbulent 

mass transfer measurements with dilute aqueous sol- 
utions of polyethylene oxide in three different sizes of 
square channel (1 cm x 1 cm, 2 cm x 2 cm and 5 cm 
x 5 cm) using the electrochemical method and pro- 

posed a similar correlation for the mass transfer 
reduction asymptote 

Jo = 0.0206Re-~ (29) 

This is also shown in Fig. 4. The current predictions 
using successive approximation show good agreement 
with the empirical correlations proposed by Virk and 
Suraiya [30] and Shulman and Pokryvailo [10-], 
lending support to the accuracy of the numerical 
scheme for analyzing turbulent mass transfer in chan- 
nel flows. 
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FIG. 4. Comparison with empirical mass transfer data, mass 
transfer j factor vs Reynolds number. 

T h e  pioneering work of Sidahmed and Griskey [27] 
is also presented in Fig. 4. These results were obtained 
in a one diameter length mass transfer test section with 
aqueous solutions of polyethylene oxide. Our present 
prediction at x/d equal to 1.0 gives excellent agreement 
with the experimental results of Sidahmed and Gris- 
key. In contrast, data reported by McConaghy and 
Hanratty [28] who used a test section of approx- 
imately three diameter length and an aqueous sol- 
ution of polyacrylamide (Separan AP-30), are sub- 
stantially higher than our current predictions even at 
x/d equal to 1.0. This may be attributed to the severe 
chemical degradation of Separan solutions [32] in the 
presence of an electrolyte. 

Figure 4 also shows the heat transfer results for 
viscoelastic fluids by Ng, Cho and Hartnett [ 14] which 
were obtained in a test tube of lid equal to 430 with 
moderately concentrated aqueous solutions of poly. 
ethylene oxide and polyacrylamide. The comparison 
of the mass transfer results with heat transfer data of 
Ng, Cho and Hartnett clearly demonstrates that the 
maximum heat transfer reduction asymptote is smaller 
than the maximum mass transfer reduction asymptote 
by a factor of three. The present results indicate that 
the eddy diffusivity of mass is much greater than that of 
heat (see Usui [33] and Mizushina and Usui [34]) and 
therefore, the analogy between heat and mass transfer 
does not apply to viscoelastic fluids. This observation 
is consistent with our previous arguments concerning 
entry lengths of heat and mass transfer for viscoelastic 
fluids. The above comparisons of heat and mass 
transfer in undegraded saturated viscoelastic fluids 
may be summarized in the following inequalities 

e n < e o (30) 

Ju < i n  (31) 

LH > Lb. (32) 

CONCLUSIONS 

The successive approximation is a simple and 
effective numerical scheme for analyzing the turbulent 
mass (or heat) transfer phenomenon in channel flows. 
The current analytical study rests on the validity of the 
eddy diffusivity of mass for polymer solutions pro- 
posed by Shulman and Pokryvailo [10] and Virk's 
velocity profile corresponding to maximum mass 
transfer reduction asymptote. Under the acceptance of 
these two conditions, the following conclusions can be 
drawn : 

(1) The predicted maximum mass transfer reduc- 
tion asymptote for viscoelastic fluids which is in 
excellent agreement with empirical results [10, 27, 30] 
reported in the literature may be described by the 
following correlation : 

Jo = 0.022Re-~ 

(2) The mass transfer entry length for drag-reducing 
fluids in circular pipe flow is found to be 8 to 40 pipe 
diameters depending on the Reynolds number. 

(3) There is no simple and direct analogy between 
heat and mass transfer for drag-reducing viscoelastic 
fluids. 
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TRANSFERT MASSIQUE DANS UN ECOULEMENT EN CONDUITE DE FLUIDES 
VISCOELASTIQUES 

R6sam~-On calcule analytiquement la longueur d'entr6e du transfert massique et l'asymptote de r6duction 
maximale de transfert massique pour ia r6duction de frottement des fluides visco61astiques. La diffusivit6 
turbulente massique de Shulman et al. [10] et le profii de vitesse de Virk correspondant ~i la reduction 
maximale de transfert massique dans l'6coulement turbulent en conduite sont appliqu6s ~i cette 6tude. La 
longueur d'entr6e pour le transfert massique est entre 8 et 40 diam6tres du tube selon le nombre de Reynolds. 
Les flux massiques ealcul6s sont en bon accord avec les r6sultats empiriques disponibles et montrent une 
reduction de 65 ~i 75~ environ du flux massique en comparaison avec les valeurs correspondant au fluide 
newtonien pour les m6mes nombres de Reynolds et de Sehmidt. Une comparaison de ces r6sultats avec des 
mesures de transfert thermiqoe disponibles permet de conclure qu'il n'y a pas de relation directe simple entre 

les transferts de chaleur et de masse pour les fluides visco61astiques ~i r&luction de frottement. 

STOFFTRANSPORT BEI TURBULENTER ROHRSTROMUNG VON VISKO-ELASTISCHEN 
FLUIDEN 

Zusammenfassung - -  Die Anlaufl/inge der Stoffiibertragung und die Asymptote der maximalen Stoffiiber- 
gangsreduktion fiir widerstandsmindernde visko-elastische Fluide wurden analytisch nach dem Veffahren 
der schrittweisen Approximation berechnet. Der turbulente Diffusionskoeffizient nach Shulman et al. [10] 
sowie das Geschwindigkeitsprofil nach Virk, das der maximalen Stoffiibergangsreduktion bei turbulenter 
Rohrstr6mung entspricht, wurden in der vorliegenden Untersuchung verwendet. Ftir die Anlaufstrecke des 
Stoffiibergangs dieser Fluide wurden je nach der Reynolds-Zahl L~ingen yon 8 bis 40 Rohrdurchmessern 
gefunden. Die berechneten Stoffiibergangszahlen dieser Fluide stimmen gut mit den vorhandenen 
empiriscben Daten iiberein. Sic zeigen n/iherungsweise eine Abnahme yon 65 + 75 % der Stoffiibergangswer- 
te gegeniiber den Werten Newtonscher Fliissigkeiten bei gleicben Reynolds- und Schmidt-Zahlen. Ein 
Vergleich dieser Stoffiibergangsergebnisse mit vorhandenen Ergebnissen von W~irmeiibergangsmessungen 
fiihrt zu dem SehluB, dab es keinen einfachen, direkten Zusammenhang zwischen W~irme- und Stofftibergang 

bei widerstandsmindernden visko-elastiscben Fluiden gibt. 
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M A C C O H E P E H O C  B TYP6YYlEHTHOM HOTOKE B~I3KOHJIACTHqHbl X  )KHjIKOCTEITI 
B TPYBE 

A n s o x a u m -  ~JIHHa BXO~HOFO yqacTKa I,I Be.~HqHna MaKCHMaJIbHOFO CHH~eHH~I Mao~orlepcHoca ~i$1 
CHW, Ka]oI~HX coHpOTHB~eHHe B~3KOIU]aCTHqHHX xHllJr 6blAH paCCqHTaHI~ aHaJIHTHqeCKH C HCI1OJIb- 
3OBaHHCM MeTO~a noc~e~OBaTe~bHblX HpH6JIHT~eHH~. B ~[aHHOM aHa~H3r 6HAg IlpHMOHeHhI BHXpeBa~ 
~H~p~y3H~l, npc~cTaBJIeHHa~l B pa6oTe [10] H npo~bI~.~b cropocTH BHpKa, COOTBeTCTBylOmHfi MaKcH- 
MaJIbHOMy CHHXeHHtO MaccoHCpCHOC.a B TyD6yJIeHTHOM nOTOKe B Tpy6r I~bI,~O Haft~eHO, qTO ~JIHHa 
BXO~HOrO y~acTKa paBHa 8 --: 40 ~HaMCTpOB Tpy6~a a 3aBHCHMOCTH OT qHCJla Pc~HO~b~ca. BbltlHCJIeH - 
Hble CKopocTH MacconepeHoca 3THX T, CH~KOC'rgfi xopOlllO coraacymTca c HMCIOmHMHCH 3MIIHpH~ICCKHMH 
~aHHblMH rio Macconepenocy, ~eMOHCTpHpyioIUHMH npxMepHo 65-75 ~o CHIOKeHHe CKopocTH Macco- 
I lepeHoca 11o cpaBHeHmO C HblOTOHOBCKHMH ~KE[J]J~OCTgMH ~JDI TCX g(e qHCC~I Pe~HO~b.~Ca H ].[IMH]ITa. 
CpaBHeHtle ~I.~HHbtX pe3yYlbTaTOB rlo MaCCotlepeHocy r HMflOI/~HMHCfl pe3y~bTaTaMR H3MCpeHHfi 
Ten.~onepeuoca nO3BO~H~O r BbIBO~ O TOM, qTO He cytUeCTByeT npOCTO~ roppe~sttUH Mex~Ry 

TeHJIO- H MaGcoHepeHOCOM CHHXalOIILtlX conpoTHs.~eHHe B~I3gOHJIaCTHqHHX 3KH.~KOCTe~. 


